ZPM600 电能质量在线监测装置

使用手册

武汉智能星电气有限公司

		目	录	
<u> </u>	参数规格			2
<u> </u>	基本操作			6
三、	接线说明			
四、	软件简介			12
五、	实时波形			14
六、	谐波分析			17
七、	录波分析			
八、	事件告警			21
九、	参数设置	<u></u>		23
+、	系统设置		<u></u>	27

NuHar

ZPM600 电能质量在线监测装置

参数规格

1.1 常规参数

1п 1-р

17 1 1914		~ ~ ~ / / .
尺寸	144(宽)×144(高)×196(长)mm	
重量	约 2.5kg	
电源		NOI V Y
电源输入电压	AC: 85V~265V	NOVO.
	DC: 110V~370V	XXX V
显示		1 N/2.0

显不

-	
尺寸	5.0寸
色彩深度	16.7M
分辨率	800×480
亮度	250 cd/m2 (Typ.)
对比度	600:1 (Typ)
可视角度	50/70/70 (Typ.)(CR≥10) (上/下/左/右)
方体	17.91.7 6

仔储

14 110	
类型	SD卡(内置)
容量	8GB
环境	

环境

工作环境	室内使用,-20℃~+70℃,湿度 90rh%以下
存储环境	室内保存,-40℃ [~] +85℃,湿度95rh%以下(不凝结)
安全性	绝缘电阻≥5MΩ,绝缘强度: 2kV (50Hz,1min)
标准	

标准

测量方法	IEC61000-4-30
测量性能	IEC61000-4-30 A 级
闪变	IEC61000-4-15
谐波	IEC61000-4-7

由磁兼容性

标准	等级 4: GB/T 17626.2-2006 静电放电抗扰度
	等级 3: GB/T 17626.3-2006 射频电磁场辐射抗扰度
	等级 3: GB/T 17626.4-2008 电快速瞬变脉冲群抗扰度
	等级 3: GB/T 17626.5-2008 浪涌(冲击)抗扰度
	等级 3: GB/T 17626.8-2006 工频磁场抗扰度
	等级 3: GB/T 17626.9-1998 脉冲磁场抗扰度
	等级 3: GB/T 17626.12-1998 振荡波抗扰度

环境可靠性

标准	GB/T 2423.1-2008	低温	
	GB/T 2423.2-2008	高温	
	GB/T 2423.4-2008	交变湿热	
	GB/T 2423.5-1995	冲击	
	GB/T 2423.10-2008	振动	
	GB/T 2423.22-2002	温度变化	

1.2 测量参数

测量项目	
------	--

测量类型	测量项
电压/电流/频率	有效值、峰值、频率偏差等
三相不平衡	电压/电流正序值、负序值、负序不平衡度、零序不平衡度
谐波	电压/电流 63 次谐波、50 组间谐波、35 组高次谐波、谐波含有率、谐波功
	率
波动/闪变	短闪变、长闪变、电压波动值
功率/电能	有功、无功、视在、功率因数等
事件记录	电压暂升、电压暂降、电压中断、冲击电流、电压电流总畸变率、奇偶次谐
	波含有率、电压电流不平衡、频率、短闪变、长闪

输入参数

测量线路	三相三线/三相四线制
测量线路基本频	50Hz
率	10 X X 2 0 1
输入通道数	电压 4 通道、电流 4 通道
测量量程	电压测量量程:标称值 57.74V/100V/230V,最大值 460V;
	电流测量量程:标称值 5A 最大值 10A

1.

.

擫宻

频率	/XXXX and
测量方式	由 10 个波形(50Hz 时)运算
显示方式	显示一个通道的频率值
测量量程/分辨	50.0000Hz/0.001Hz
率	
测量带宽	42. 5000 [~] 57. 5000Hz
测量精度	± 0.001 Hz
电压 1/2 有效值、	电流 1/2 有效值
测量方式	每两个周波运算一次,每周波去1/2周波组成1个波形运算
测量量程/分辨	Max 电压: 460V/0.01, Max 电流: 10A/0.001A
率	
测量精度	标称电压的 0.2%
电压有效值	
测量方式	由 10 个波形(50Hz 时)运算
显示方式	每通道的电压有效值

测量量程/分辨	Max 由压・ 460V/0 01V				
· 《重重祖/ 为 》 率					
测量精度	标称电压的 0.1%				
电流有效值					
测量方式	由 10 个波形(50Hz 时)运算				
显示方式	每通道的电流有效值				
测量量程/分辨	Max 电流: 10A/0.001A				
率					
测量精度	标称电流的 0.1%				
谐波电压、谐波电	1				
测量方式	符合 IEC61000-4-7,分析窗口幅度 10 个周波				
窗口点数	每10个周波共5120点				
显示方式	表格图				
测量次数	1次~63次				
测量量程/分辨	Max 电压: 460V /0.005,				
率					
测量精度	电压谐波大于 1%标称值时:误差小于 5%设定值				
	电压谐波小于 1%标称值时:误差小于 0.05% 标称电压值				
	电流谐波大于 3%标称值时:误差小于 5%设定值				
	电流谐波小于 3%标称值时:误差小于 0.15%标称电压值				
间谐波电压、间谐	皆波电流				
测量方式	符合 IEC61000-4-7, 分析窗口幅度 10 个周波				
窗口点数	每10个周波共5120点				
显示方式	表格图				
测量次数	0~49 组				
测量精度	电压谐波大于 1%标称值时:误差小于 5%设定值				
3	电压谐波小于 1%标称值时:误差小于 0.05% 标称电压值				
	电流谐波大于 3%标称值时:误差小于 5%设定值				
	电流谐波小于 3%标称值时:误差小于 0.15% 标称电压值				
高次谐波电压、高	5次谐波电流				
测量方式	符合 IEC61000-4-7,分析窗口幅度 10 个周波				
窗口点数	每 10 个周波共 5120 点				
显示方式	表格图				
测量次数	1~35 组				
测量精度	电压谐波大于 1%标称值时:误差小于 5%设定值				
	电压谐波小于 1%标称值时:误差小于 0.05% 标称电压值				
	电流谐波大于 3%标称值时:误差小于 5%设定值				
	电流谐波小士 3%标称值时:误差小士 0.15% 标称电压值				
测量万式	有切切率: 母 10 个周波进行运算 				
	代仕切举: 田电压电流的有效值米运算 工具由海、由地在中海、石井井南市以第				
工切切率: 田忱仕切率、月切切率米计昇					
学习知知的目中方之间					

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址: 武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 4 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

显示方式	表格图
测量量程/分辨	根据电压电流量程来确定
率	
测量精度	±0.5%设定值
功率因数	
测量方式	由电压有效值、电流有效值、有功功率进行计算
显示方式	实时数据显示
测量量程/分辨	-1.0000~1.0000
率	
测量精度	± 0.01
电压不平衡度、电	a流不平衡度(负序、零序)
测量方式	三相三线制或三相四线时,使用三相的基波成分来计算
显示方式	表格图、矢量图
测量量程	0.00%~100%
测量精度	电压不平衡度: ±0.2%; 电流不平衡度: ±0.2%
电压波动	
测量方式	半波方均值来计算
显示方式	表格图
测量量程	0.00%~100%
测量精度	$\pm 5\%$
IEC 闪变	1721
测量项目	短闪变 (Pst)、长闪变 (Plt)
测量方式	根据 IEC61000-4-15 连续测量 10 分钟的 Pst,连续测量并计算 2 小时 Plt
显示方式	表格图
测量量程	0~20
测量精度	$\pm 5\%$
冲击电流	
测量方式	电流的半波有效值超过设定值的正向冲击电流
显示方式	冲击电流波形、冲击电流最大值
测量精度	0.1%
电压暂升、电压智	降、短时中断
测量方式	暂升: 电压半波有效值正方向超过设定值时, 判定为暂升
	暂降: 电压半波有效值负方向超过设定值时, 判定为暂降
\sim	短时中断: 电压半波有效值负方向超过设定值时, 判定为瞬间中断
显示方式	暂升、暂降、短时中断的波形持续时间、幅度等
测量精度	0.1%

二、基本操作

2.1、装置外观及结构

装置外观如图 0-1 所示:

装置采用整面板形式,面板上包括液晶显示器、信号指示灯、操作键盘等。采用加强型单元机箱,能有效抵抗强振动与强干扰,确保装置在条件恶劣的环境条件下仍具备高可靠性。不论组屏或分散安装均不需加设交、 直流输入抗干扰模块。装置的外形尺寸如图 0-2 所示:

图 0-2 外形尺寸

2.2、平台说明

电能质量监控装置采用公司新一代 32 位基于 ARM+DSP 双核技术的通用硬件平台。全封闭机 箱,硬件电路采用后插拔式的插件结构,CPU 电路板采用 6 层板、元器件采用表面贴装技术,装 置强弱电回路、开入开出回路合理布局,抗干扰能力强。

软件平台采用自主开发的 RTOS 系统 Aworks, Aworks 平台经过公司的严格测试,在其内部 多个项目中已有应用实践,可以保证软件系统的高度可靠性。

2.3、接口说明

图 0-3 接口说明图 表 0-1 接口信号说明 插件 1

	11111		
名称	功能	安装说明	
NET	网线插座	连接以太网,RJ45 水晶头	
RS232	调试串口	输出系统调试信息	
GPS	GPS_CLK	GPS 硬件校时脉冲输入信号	
GND	GPS_GND	GPS 硬件校时脉冲输入信号 地	
485A	RS485_A	RS-485 差分信号 A	
485B	RS485_B	RS-485 差分信号 B	
COM RS485_COM1		RS-485 隔离地	
V	插件 2		
名称	功能	安装说明	
I_A	电流采集输入端 A	A 相电流采集输入通道	
I _{A'}	电流采集输出端 A	A 相电流采集输出通道	
I _B	电流采集输入端 B	B 相电流采集输入通道	
I _B ,	电流采集输出端 B	B 相电流采集输出通道	
$I_{\rm C}$	电流采集输入端 C	C 相电流采集输入通道	
I _{C'}	电流采集输出端 C	C 相电流采集输出通道	
Io	电流采集输入端 O	中性线电流采集输入通道	
I _{O'}	电流采集输出端 O	中性线电流采集输出通道	

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

U _A	通道 A	A 相电压采集通道
U_B	通道 B	B 相电压采集通道
U_{C}	通道 C	C 相电压采集通道
U_N	通道 N	中性线电压采集通道
AGND	参考地	电压信号采集参考公共地
	插件 3	
名称	功能	安装说明
		继电器1输出端
DO1	继电器1	触电负载:阻性,250VAC 8A
		切换电压: 400VAC/300VDC
		继电器2输出端
DO2	继电器 2	触电负载:阻性, 250VAC 8A
		切换电压: 400VAC/300VDC
DI1	开漏输入信号	光耦1输入端
CND1	工泥絵) / 白 山	交流输入范围: 85V~265V
GNDI	开厢把八宿与地	直流输入范围: 110V~370V
DI2	开漏输入信号	光耦2输入端
CNID2	工泥絵) 信早期	交流输入范围: 85V~265V
GND2	川禰꿰八宿与地	直流输入范围: 110V~370V
	. 09	连接到火线
L/+	电源输入	交流输入范围: 85V~265V
	Vala	直流输入范围: 110V~370V
	000.0	连接到零线
N/—	电源输入	交流输入最大值: 265V
	V CAN	直流输入最大值: 370V
÷ –	大地	连接到大地
÷2_/	外壳地	连接到大地
112	(D) ()	

主要插件说明

插件1:包含微处理器 CPU、RAM、ROM、Flash Memory、网络通讯电路等;此外还包括 GPS 报文对时、IRIG-B 码对时接口。本插件采用6 层印制板和表面贴装工艺,采用了多种抗干 扰措施,大大提高了抗干扰性能。高性能的微处理器 CPU 为 32 位双核处理器,主频达 600MHz。 集成电路全部采用工业品或军品,使得装置有很高的稳定性和可靠性

插件 2: 交流变换部分包括电流变换器 TA 和电压变换器 TV,用于将系统 TA、TV 的二次侧 电流、电压信号转换为弱电信号,供保护插件转换,并起强弱电隔离作用。本插件的 6 个 TA 分 别变换 I_A、I_A、I_B、I_B、I_C、I_C、I_C、I_O、I_O·六个电流量, 4 个 TV 分别变换母线电压 U_A、U_B、U_C、 U_N。

插件 3:将外部提供的交或直流电源转换为监测装置工作所需电压。本模块输入直流 110V~370V 或交流 85V~265V(根据需要选择相应规格),输出+5V。+5V 电压用于装置数字器件 工作,再通过转换电路输出±9V 电压用于 A/D 采样。还包括两路开入和两路继电器输出。

2.4、按键功能说明

装置共有6个按键,全部位于屏幕下侧。

图 0-4 面板布局效果图 表 0-2 面板按键功能说明表

按键	功能说明
ENTER	"确认"按键,用于在主显示区域确定操作,或在菜单区域进入子菜单, 或从菜单区域切换到主显示区域
ESC	"取消"按键,用于取消操作,或在主显示区域返回菜单区域,或在菜 单区域返回上一次菜单
A	"向上"按键,用于在主显示区域或菜单区域向上切换
	"向左"按键,用于在主显示区域向左切换,或菜单区域向主显示区域切换
*	"向右"按键,用于在主显示区域向右切换,或主显示区域向菜单区域切换
•	"向下"按键,用于在主显示区域或菜单区域向下切换

表 0-3 面板指示灯功能说明表

指示灯	功能说明
	亮: 电源正常: 灭: 电源故障或未接通电源
((.))	闪烁: 3 下 - 有告警事件发生, 5 下 - 有暂态事件发生; 灭: 无暂态 和告警事件

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址: 武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 9 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

三、接线说明

3.1 接线要求

在装置的后面板有4个插件,分别为电源插件、交流插件、I/0插件和CPU插件。在开始接 线之前,须先根据将要测量的电力系统线路电压、频率及接线方式等需求,设置好分析仪器。若 有可能,请尽量断开电源系统,再做接线操作,并尽可能穿戴防护设备。接线前要将连接导线拧 紧,以防导线丝裸露在端子排外面发生短接,接线时请按照装置后面板各插件所示参数相对应接 线,要将螺母拧紧,以免发生松动。

3.2 典型接线图

本装置共支持3种测量模式,在连接测量导线之前,请正确配置仪器的测量模式,详细流程见后面接线方式配置。各种测量模式的接线,请参考下面连线示意图。

典型接线图包括三种,见以下各图:

图 0-3 三相三线三角形接法 件 2 丝印文字一一对应。

注:图片中各通道的命名与设备插件2丝印文字一一对应。

WuHar

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址: 武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 11 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

四、软件简介

多功能电能质量监测仪具有强大的测量、运算以及分析能力,测量结果准确无误,界面简 洁优雅,提供最好的用户体验,让您了解当前电能各项参数,最快定位电网问题。设备终端软件 基于公司自主研发的嵌入式实时操作系统 Aworks 开发,系统的可靠性高,稳定性强,支持丰富 的底层硬件,具有强大的可定制性。

4.1 功能

在电能监测方面提供丰富的数据项,帮助您发现与定位电能问题,同时提供许多人性化功能,整体功能如表 0-1:

	主菜单	子菜单	功能说明		
	实时波形	电压 电流	实时显示三相电压、电流波形及有效值		
		有效值 相位	实时显示电压、电流有效值、相位角、序分量以及不平衡度 实时显示电压偏差值		
		功率	实时显示有功功率、无功功率、视在功率、位移功率因数、功率因数		
		波动闪变	实时显示电压波动、短闪变(PST)、长闪变(PLT)		
		电能	显示当日/月消耗的电能以及需量相关信息		
	谐波分析	谐波	实时显示电压、电流 1-63 次谐波有效值、含有率、相位角		
		间谐波	实时显示电压、电流 0-49 次间谐波有效值、含有率		
		高频谐波	实时显示电压、电流 1-35 次高频谐波有效值、含有率		
		谐波功率	实时显示 1-63 次谐波功率有效值		
录波分析		定时录波	手动开始录波或定时预约录波,可设置录波时间		
		触发录波	开启或关闭告警录波以及电平录波		
Л	事件告警	暂态事件	按日期查询设备记录的暂态事件,包括电压暂升、电压暂降、电压中 断、冲击电流		
L	1.	稳态事件	按日期查询设备记录的稳态事件,包括电压越限、频率越限、谐波越 限等		
2	参数设置	基本参数	设置电压、电流变比、标称电压、存储周期、电压等级等		
/		暂态参数	设置暂态事件越限阈值		
		稳态参数	设置稳态事件越限阈值		
		谐波电流	设置 2-25 次电流谐波越限阈值		
		接线方式	设置设备接线方式		
系统设置 系统信息 查看设备序			查看设备序列号、软件版本、硬件版本、DSP 版本以及 FPGA 版本		

表 0-1 整体功能

网络设置	设置设备网络参数
协议设置	设置通信协议参数,包括IEC-103、Modbus-485、Modbus-TCP
校时设置	设置校时方式,包括手动校时、SNTP、B 码、PPS
继电器	设置继电器1和继电器2关联方式
高级设置	设置系统语言及修改设备密码

4.2 界面

多功能电能质量监测仪主界面以简洁优雅为主,各个图标代表各个功能模块,选中图标点击【ENTER】键进入对应功能页面,主界面如图 0-1 所示:

图 0-1 设备主菜单界面图

子页面由右侧导航菜单与左侧展示区域两部分组成,通过【ENTER】键与【ESC】键在两个区域切换,在 导航区通过上下键切换选项卡,【ENTER】进入展示区进行编辑参数,【ESC】回退到主菜单。

0-2 参数设置-基本参数

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

五、实时波形

"实时波形"页面显示当前监测到的各项电网参数,主要包括电压(电流)有效值、系统频率、 电压偏差、相位角(向量图)、电能功率以及波动闪变的实时数据,可以第一时间了解到电网用 电情况。

5.1 电压/电流

导航菜单选择"电压/电流"选项卡,可以看到电压/电流各相的波形图、有效值以及频率, 相位与波形线颜色对应情况:A相-黄、B相-绿、C相-红。

图 0-1 实时波形-电压/电流

5.2 有效值/相位

导航菜单选择"有效值/相位"选项卡,可以看到电压/电流的正/负/零序分量、零/负序不 平衡、有效值、相位角以及电压偏差,电压/电流相位角通过向量图直观的展示。

图 0-2 实时波形-有效值/相位

5.3 功率

导航菜单选择"功率"选项卡,可以看有功功率(W)、无功功率(var)、视在功率(VA)、 位移功率因数以及功率因数,功率电能数据项实时通过 DSP 计算并将值显示于表格。

					2017-07-21 11:29:07
数据关部	A.相	8相	C 相	是和	电压/电流
有功功率(W)	0.00	0.00		0.00	有效值/相位
无职功率(var)	0.00	0.00		0.00	HAME IN
视在功率(VA)	0.00	0.00		0.00	功率
位移功率因数	0.00	0.00		-	波动闪察
功率因数	0.00	0.00		0.00	and the second s
					电能
		× I — I			

图 0-3 波形显示-电流界面

单位说明:

W: 有用功率单位, 瓦特

var:无用功率单位,乏

VA: 视在功率单位, 伏安

5.4 波动闪变

导航菜单选择"波动闪变"选项卡,可以看到波动、短闪变(pst)、长闪变(plt)。

图 0-4 实时波形-波动闪变

5.5 电能

导航菜单选择"电能"选项卡,可已看到有功功率、无功功率以及视在功率消耗的电能量,同时可查看当前需量值、最大需量值以及最大需量出现的时间。

2017 年 7	7月21日	日刻董	8	2017-07-21 11:29:50
数据关型	A相	8 租	C 相	BG / BX
正由有职(Wh)	271.20k	271.20k		-914 (1986
反可有功(Wh)	0.00	0.00		有效值 相位
正向无聊(varh)	271.20k	271.20k		功 率
反向无切(varh)	0.00	0.00		波动闪变
雨葉(W)	1.80M	1.80M		44/ 148
最大額量(W)	1.80M	1.BOM		田 畦
鐵大幣量时间	2017-07-21 10:54:21	2017-07-21 10:54:21	2017-07-21 10:54:21	

图 0-5 实时波形-电能

Wultan

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

六、谐波分析

"谐波分析"页面主要显示谐波、间谐波、高频谐波和谐波功率相应的电能参数,该部分数据为 实时数据,计算准确无误,其中谐波数据项能计算到 63 次:

- 1) 电压/电流谐波:有效值、含有率、相位角
- 2) 电压/电流间谐波:有效值、含有率
- 3) 电压/电流高频谐波:有效值
- 4) 谐波功率:有效值

6.1 谐波

导航菜单选择"谐波"选项卡,可以看到1[~]63次电压、电流谐波有效值、含有率、相位角表格图,通过将光标定位到选项框按上下键,切换电压/电流、有效值/含有率/相位角以及页码查看更多数据项。

#81 ···	- 444	有20月 -	图1 页 🕞	2017-07-21
27.65	A RE(V)	II (iii)	C ==(V)	11.00.00
14	10.000	10,000	10,000	唐 哀
2	10.000	10.030	101000	Terry and the V
3	10.000	10.000		10 M M
1 - X	10.000	10.000		高级供应
.5	10.000	10.000		11000000
	10:000	10:000		雪波功率
$\overline{\pi}$	10.000	10,000		
18	10.000	10,000		
	10,000	10.000		
10	10,000	10.000		

图 0-1 谐波分析-谐波

6.2 间谐波

导航菜单选择"间谐波"选项卡,可以看到各个中心频率的电压、电流间谐波有效值与含有 率表格图,通过将光标定位到选项框按上下键,切换电压/电流、有效值/含有率以及页码查看更 多数据项。

4版 •	行动道 •	前1页 -	2017-07-21
平白后海(柏z)	A HE(V)	II ===(V)	14.00.20
25	0.000	0.000	语 友
76	0.000	0.000	Land Section
125	0.000	0.000	同题家
175	0.000	0.000	萬秘佛表
225	0.000	0.000	ST-Satelantin -
275	0.000		香波功率
325	0.000	0.000	
375	0.000		
425	0.000	0,000	
475	0.000		

图 0-2 谐波分析-间谐波

6.3 高频谐波

导航菜单选择"高频谐波"选项卡,可以看到各个中心频率的电压、电流高频谐波有效值表格图,通过将光标定位到选项框按上下键,切换电压/电流以及页码查看更多数据项。

	製商 •			2017-07-21
平位原草(日本)	A HI(V)	6 (4)(V)	< €(V)	ON ALCONE OF
2100	0.000	0,000		書 波
2300	0.000			10 111 111
2500	0.000			日間故
	0.000	10.000		高級協力
2900	0.000	0.000		The second second
	0.000			普波功率
3300	0.000	0.000		
3600	0.000	0.000		
3700	0.000	0.000		
3900	0.000	0.000		

图 0-3 谐波分析-高次谐波

6.4 谐波功率

导航菜单选择"谐波功率"选项卡,可以看到各次高频谐波有效值表格图,通过将光标定位 到选项框按上下键,切换页码查看更多数据项。

副1页 •	8			2017-07-21
	A HI (VV)	6 (EL(VV)	<##(₩)	14,10.02
	0.000	0.000		齿 友
	0.000	.0.000		141 144 1441
	0.000	0.000		田 西 家
	0.000	0.000		高频游波
	0.000	0.000		Transference.
	0.000	0.000		凿波功率
	0.000	0.000		
	0.000			
	0.000	0.000		
	0.000	0.000		

图 0-4 谐波分析-谐波功率

NUHA

七、录波分析

"录波分析"页面主要用于配置定时录波与触发录波,终端软件会根据设置的配置项,在 特定事件发生的时候进行录波,并将波形文件保存于 SD 目录下,文件路径为/sd0/export/record, 波形文件己 IEEE 标准电力系统暂态数据交换通用格式 COMTRADE 进行保存。

7.1 定时录波

导航菜单选择"定时录波"选项卡,支持"立即录波"与"手动录波":

- 1) 立即录波:点击"立即录波"按钮,设备会开始进行录波,录波结束保存的 comtrade 文 件名会显示于界面上,录波时长可以在界面中进行配置
- 2) 预约录波:点击"预约录波"按钮,设备会在设定的时间点到达后,自动开始进行录波, 录波时长与开始录波的时间可以在界面中进行配置

			2017-07-21 14:17:52
录波时长:	10	s	定时录波
预约录波:	2017/07/21		触发录波
	15:03:03		
立80.9	波 预约束发		

图 0-1 录波分析-定时录波

7.2 触发录波

导航菜单选择"触发录波"选项卡,可以配置事件触发录波,当特定事件发生如稳态告警、 外部电平改变发生,设备就会开始进行录波:

- 1) 告警录波:告警类型支持频率上/下越限,电压/电流负序不平衡,电压上/下越限,电压 总畸变率越限,如果界面中已经勾选相应时间并保存配置,事件发生即会开始录波
- 2) 电平录波: ZPM600 支持外部触发录波,当外部电平改变且配置已关联开入某个动作,设备就会开始进行录波

图 0-2 录波分析-触发录波

ong

NUT

八、事件告警

"事件告警"页面主要用于显示过去发生的告警事件,告警事件分两大类:稳态告警和暂态告警,事件列表按降序排序,最近发生的事件排在最顶端,可以将光标定位到列表进行翻页查看,同时支持按日期查询,对过去发生的事件查看,快速正确的定位电能质量问题。

8.1 暂态告警

暂态告警事件的阀值配置可以到"参数设置"进行更改,暂态事件类型主要有:电压暂升、 电压暂降、电压中断以及冲击电流。

当暂态事件发生后,ZPM600设备告警灯会进行闪烁提示,并保存对应的暂态事件记录,内容包括暂态事件开始时间、结束时间以及暂态事件类型,帮助您第一时间分析与解决电能质量问题。

图 0-1 事件告警-暂态事件

8.2 稳态告警

稳态告警事件的阀值配置可以到"参数设置"进行更改,ZPM600支持的稳态事件类型主要有: 电压上越限、电压下越限、电压谐波含有率越限、电压负序不平衡越限、电流负序不平衡越限、 谐波总畸变率越限、长闪变越限、短闪变越限、频率上越限、频率下越限以及谐波电流有效值越 限。

当稳态事件发生后,ZPM600设备告警灯会进行闪烁提示,并保存对应的稳态事件记录,内容包括事件开始/结束时间以及具体的稳态事件内容(事件类型、越限/恢复值、具体相位),帮助您第一时间分析与解决电能质量问题。

2017-07-2 14:19:42	记录数: 100	查询	Β	7月21	7 年	201
新态事件					试商	席誉
And State of Lan.	有率就限3.00%	33次电压管波:	C 植	11:35:41	开始	31.6
稳态事件	會每單越限3.00%	81次电压撕游;	C 相	11:35:35	开始	2
900000000000	皆有率越限3.00%	59次电压雷波	C相	11:35.29	开始	3
	合有率越限3.00%	57次电压谐波	C 相	11:35:23	开始	4
	5有率越版3.00%	55次电压指波:	C相	11:35:17	开始	5
	的有率越限3.00%	53次电压管液。	C 相	11:35:11	开始	6
	5有座越開3.00%	51次电压谐波:	C相	11:35:05	开始	7
	音響建限3.00%	49次电讯信波:	C 相	11:34:59	开始	8.
	合有單種限3.00%	47次电压皆变;	C 框	11:34:53	开始	9
	合有率越短3.00%	45次电压指数:	C相	11:34:47		10

图 0-2 事件告警-稳态告警

WuHar

九、参数设置

"参数设置"页面主要用于配置与查看 ZPM600 各项电能指标参数,包括基本参数、暂态参数、 稳态参数、谐波电流参数与接线方式,ZPM600 根据配置的参数对电能数据项计算以及事件判断 等。

9.1 基本参数

导航菜单选择"基本参数"选项卡,查看与更改电能质量的基本参数,主要参数项有:

图 0-1 参数设置-基本参数 表 0-1 基本参数说明

	にして空中シス加加	
设置项目	范围	备注
1次PT	1~9999.0	一次电压/二次电压
1 次 CT	1~9999.0	一次电流/二次电流
N相PT	1~9999.0	一次电压/二次电压
N相CT	1~9999.0	一次电流/二次电流
标称电压	0~230	单位: V
标称电流	0~5	单位: A
统计记录周期	1/2/3/5/10	单位:分钟
存储时间周期	1/2	单位:小时
最小短路容量	0.1~9999.0	单位: MVA
外接零序	是 或者 否	
电压等级	380V、6KV、10KV、35KV、66KV、	
	110KV、220KV	

9.2 暂态参数

导航菜单选择"暂态参数"选项卡,查看与配置暂态事件判断阀值与记录事件波形前后周期数。

图 0-2 暂态参数界面

参数说明:

表 0-2 暂态参数说明

设置项目	范围	备注
电压暂升阀值	110.0~180.0	单位:%
电压暂降阀值	10.0~90.0	单位:%
电压中断阀值	1.0~10.0	单位:%
冲击电流	110~200	单位:%
前置周期	2~10	无
附加周期	2~50	无

稳态参数

导航菜单选择"稳态参数"选项卡,查看与配置稳态事件判断的阀值。

图 0-3 参数设置-稳态参数

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com 地址: 武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 24 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

参数说明:

设置项目	范围	备注
电压总畸变率越限值	0.01~30.0	单位:%
电压奇次谐波含有率	0.01~10.0	单位:%
电压偶次谐波含有率	0.01~10.0	单位:%
电压负序不平衡越限值	0.01~10.0	单位:%
电流负序不平衡越限值	0.01~10.0	单位:%
短闪变	0.0~30.0	无
长闪变	0.0~30.0	无
电压上偏差	101~110	单位:%
电压下偏差	90~99	单位:%
频率上越限	50.2~50.5	单位: Hz
频率下越限	49.5~49.8	单位: Hz

表 0-3 稳态参数说明

9.3 谐波电流

导航菜单选择"稳态参数"选项卡,查看与配置谐波电流允许值。

2017-07-21 14:22:42						
里木会教	70111回(A)	带汉电流	治汗菌(A)	南武电流	元計画(A)	带支电流
245 SX	8.60	1825	16.00	10次	78,00	2次
5万大分第0	16.00		28.00	11次	62.00	
開始を数	7.80	20%	13.00	12次	39.00	-4次
10 + 40 40	8.90	2100	24.00	1322	62.00	
福念豪致	7.10	22次	11.00	14次	26.00	6次
	14.00	2320	12.00		44.00	
谐波电流	6.50	24%	9.70	16次	19.00	.8次
and the second	12.00	25次	18.00	1725	21.00	
接线方式						
			取消	保存		

图 0-4 参数设置-谐波电流

操作说明:

● 各项均表示阀值,需输入有效数据;电压等级的不同,谐波电流的标准阀值也不一样, 当修改电压等级时,谐波电流会变换到相应的标准阀值;

● 点击"保存"按钮,进行保存。

接线方式

导航菜单选择"接线方式"选项卡,配置当前设备的接线模式,本装置共支持二大类接线模式:"三相三线制"、"三相四线制"。

三相三线星型接法:

图 0-5 参数设置-三相三线星型接法

(G

图 0-6参数设置-三相三线三角形接法

三相四线星形接法:

图 0-7 参数设置-三相四线星型接法

十、系统设置

"系统设置"页面显示与配置当前设备系统参数,主要系统参数包括网络、协议、校时、继电器 以及设备密码,通过系统设置可以方便的管理设备。

10.1 系统信息

导航菜单选择"系统信息"选项卡,可以查看系统的各种版本信息,包括:软件版本、硬件版本、DSP版本以及 FPGA 版本。

图 0-1 系统设置-系统信息

10.2 网络设置

导航菜单选择"网络设置"选项卡,配置网络地址、子网掩码和默认网关,ZPM600设备具有 检测 IP 冲突功能,当设置的 IP 地址与局域网中某台主机或者设备的 IP 冲突的时候,界面会做 相应的提示。

图 0-2 系统设置-网络设置

10.3 协议设置

导航菜单选择"协议设置"选项卡,对系统的通信协议进行设置,系统支持的协议有 IEC-103、Modbus-485 以及 Modbus-TCP

	2017-07-21
	14:54:43
mikiye tanış Modbus-485 ►	系统信息
协议地址: 3	网络设置
波特率: 🚺 115200	切议设置
	校时设置
20 1 2 20 12	
18.52 40.74	高级设置
	all and

操作说明:

- 选择协议类型选择框,更改协议类型选择某一种协议;
- 根据不同的协议对配置项进行设置;
- 点击"保存"按钮,若修改成功,则更换当前系统的协议配置信息。

10.4 校时设置

导航菜单选择"校时设置"选项卡,对系统的校时方式进行配置,主要的校时方式有手动校时、SNTP 校时、B 码校时和 PPS 校时。

			2017-07-21 14:55:12
校时类型:	手动	۰.	系统信息
日期:	2017/07/21	-j	网络设置
时间:	14:51:56		协议设置
			校时设置
			继电器
1413	20, 25		高级设置

图 0-4 系统设置-校时设置

操作说明:

- 光标定位到协议类型选择框,选择想要的校时方式;
- 配置所选择的校时方式参数;
- 点击保存按钮,在弹出界面中输入密码。
- 除手动校时外,其他校时方式如果校时成功,界面会做相应提示,以便知道设备当前校 时状态

10.5 继电器

导航菜单选择"校时设置"选项卡,可以对系统继电器进行配置,ZPM600设备有两个继电器,通过将光标定位选择继电器选择框切换继电器 1/2,对继电器状态查看与配置,外部通过检查继

电器状态了解当前设备运行情况。

继电器 1: 用于关联设备开/关机状态,设备开机状态与继电器状态对应情况

表 0-1 继电器 1	关联设备状态对	照表
设备状态	继电器状	态
开机	断开	
关机	闭合	
继电告警器1	状态: 新开	2017-07-21 14:55:43

		14/30/43
		系统信息
		网络设置
	建电器1 关款设备开机状态	协议设置 して つ
		校时设置
		金 維 电 器
		高级设置

图 0-5 系统设置-继电器 1

继电器 2:用于关联设备部分稳态告警事件与暂态事件,当勾选的事件发生时继电器闭合, 事件结束继电器断开。

	》總用器2	状态: 断开	2017-07-21 14:56:19
告誓事件	▼版率上越限	▼电压负序不平衡	系统信息
	◎ 版率下越限 ● 电压上偏差	 电流负序不平衡 播波电流有效值 	网络设置
	▼电压下偏差	<mark>梁</mark> 电压应畅变率越限	协议设置
智态事件	◎电压暂升	★电压管焊	KC 97 10 197
	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	2种击电流	
	R73	取消	18 H 8
			高级设置

图 0-6 系统设置-继电器 2

10.6 高级设置

导航菜单选择"高级设置"选项卡,可对系统语言以及系统密码进行设置,默认进入页面为语言设置,当前系统支持中文及英文两种语言,设置完成后保存即可应用。

	2017-07-21 14:33:14
语言	系统信息
中文	网络设置
	訪议设置
	校时设置
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
保存取消	(高级设置

图 0-7 系统设置-语言设置

将第一个选项框切换至"密码",可以对系统密码进行设置,系统密码用于防止非工作人员 更改设备配置,在更改配置进行保存的时候,设备会提示输入密码。密码验证有超时机制:输入 密码后在一定时间内不用输入密码,以便用户更快操作,密码超时如果再次更改配置需要重新验 证密码。

2017-07-21 14:36:40
系统信息
网络设置
协议设置
校时设置
继电器
高级设置
码设置