Z5080 三相交流标准源

使用手册

武汉智能星电气有限公司

一、产品概述	2
二、功能描述	2
三、技术指标	
四、仪器外观	
五、操作方法	7
九、售后服务	
5	King King King King King King King King

WuHan

Z5080 三相交流标准源

一、产品概述

三相交流标准源采用表源一体化结构,全数字闭环标准源技术,使用嵌入式系统、大屏幕 TFT 彩色液晶显示器、CPLD 芯片和高精度 A/D、D/A 等一系列先进器件,体积小重量轻,可广泛应用于电能计量行业、电气实验室和其他相关部门,便于携带到现场使用。

二、功能描述

- 1. 采用触摸屏控制面板加面膜按键,显示信息量大,使用简单方便。
- 内嵌高等级标准功率电能表,并以此为标准进行数字闭环反馈,电压、 电流、频率、相位、有功功率、无功功率、视在功率、功率因数等各参 量均可作为标准使用。
- 具有多种保护功能:限流保护、功放保护、电压短路保护、电流开路保护、功放热保护等功能。
- 4. 三相电压、电流回路独立控制,每一相电压、电流输出参量可分别调节。
- 智能档位:在仪器允许输出的范围内,用户可以任意设定三相电压、电 流各自的额定电压、电流档位,电压电流的试验点、调节细度均参照用 户设定的额定档位值,方便用户操作。
- 6. 电压、电流、相位试验点丰富,便于操作。
- 7. 带 RS232 串口,开放通讯规约,便于计算机控制及升级软件。

三、技术指标

- 1. 电源输出:
 - 1) 交流相电压输出
 - a. 调节细度: 0.01%RG

b. 分辨率:6位有效数字

c. 准确度:优于±0.1%RG

- d. 稳 定 度: 优于±0.02%RG/1min
- e. 失 真 度: 优于 0.2% (非容性负载)
- f. 输出功率: 额定每相 20VA
- g. 满负载调整率: 小于±0.01%RG
- h. 输出范围: 10V~460V
- i. 档位设置: 57.7V、100V、220V、380V,内部自动档位切换。

2) 交流电流输出

- a. 调节细度: 0.01%RG
- b. 准确度:优于±0.1%RG
- c. 分辨率:6位有效数字
- d. 稳 定 度: 优于±0.02% RG /1min
- e. 失 真 度: 优于 0.5%
- f. 输出功率: 每相额定输出 20VA。
- g. 满负载调整率: 小于±0.01%RG
- h. 输出范围: 1mA~24A

Elec

ing

i. 档位设置: 0.2A、1A、5A、20A, 自动档位切换

3) 功率输出

a. 准确度:优于 0.1%RG

b. 稳定度:优于 0.02%/1min。

c. 分辨率: 6 位有效数字(有功功率、无功功率、视在功率)

Ele

4) 功率因数

a. 调节范围: -1~0~+1;

b. 分辨率: 0.00001;

c. 准确度: 0.001。

5) 相位

a. 调节范围: 0~359.99°

b. 分辨率: 0.001 °

c. 准确度: ±0.05°

6) 频率

a. 调节范围: 40Hz~70Hz

b. 分辨率: 0.001Hz

c. 准确度: ±0.005Hz

7) 谐波

可以准确输出 2~31 次谐波,各次谐波可以任意组合叠加在一起同时输出,但是输出谐波时总的谐波含有率之和不要超出下表所出的限制。 谐波含量显示准确度 0.1%,谐波含量显示分辨率 4 位有效数字。谐波相

Neng

位(相对于基波)调节范围 0-359.99°。

谐波次数	电压最大谐波含有率(相对于基波)
2-8	40%
9-15	30%
16-31	20%

- 2. 仪器提供的常用输出调节试验点
 - 1) 电压试验点: 50%、80%、100%、110%、120%。
 - 2) 电流试验点: 5%、10%、20%、50%、70%、100%、120%。
 - 3)相位试验点: 0.5L、0.8L、1.0、0.8C、0.5C。
 - 4) 三相电压、电流的幅度可以分别调节,调节细度:10%、1%、0.1%、0.01%; 调节范围最大到125%。
 - 5) 三相电压、电流的相位、功率因数也可以分相调节,调节细度分别为 10°、1°、0.1°、0.01°。
 - 6) UB、UC 分别对 UA 的相位也可以分别调节。
 - 7)频率的调节是三相电压电流一起调节的,调节细度分别为 5Hz、1Hz、0.1Hz、0.01Hz。
- 3. 供电电源: 单相 AC 220V, 50/60Hz。
- 4. 外部尺寸: 450*480*153mm
- 5. 重量: 18Kg。

- 四、仪器外观
- 1. 前面板如图1所示:

2. 后面板如图2所示:

图 2

▲上图中 I1、I2、I3 是三相电流输出插孔, U1、U2、U3、UN 是三相电压输出插孔。

五、操作方法

操作者在使用本仪器时,注意触及屏幕的力度,不要用力过大,损坏触 摸屏。

面板上的功能键介绍:

键盘上的按钮可以实现不同的功能, 仪器可以转到下面几个界面:

【参数】:用于设置电源的状态,包括三相四线、三相三线、单相等,设置 三相或单相电压、电流输出的额定值,以及谐波次数、含量、谐波相位。

【试验】:试验界面包含了常用的电压、电流、功率因数试验点。

【调节】: 对电源三相电压电流的任意一相或全部输出的幅度、相位、功率 因数、频率进行调整。

【谐波】:显示电源输出的 2-31 次谐波的含量及柱状图。

【波形】:显示电源输出三相电压、电流波形。

【校正】: 连续按两次,可以校正触摸屏的位置参数。

【UI】: 允许三相电压电流升输出或关闭,即三相电压电流输出的总开关。

【UA】: A 相电压输出开关。

【UB】: B相电压输出开关。

【UC】: C相电压输出开关。

【IA】: A 相电流输出开关。

【IB】: B相电流输出开关。

【IC】: C相电流输出开关。

【0。。。。。。9】【。】:数字输入键。

【删除】:删除不需要的数据或选中的某一次谐波输出。

【确认】:确认输入的数据。

检查外部接线无误后(电压输出不能短路,电流输出不能开路),打开 电源开关。仪器进入加载界面(如图3)。约两三秒钟后仪器系统加载完毕, 蜂鸣器长鸣一声,进入试验界面,如图4所示。

图 3 程序加载界面

1. 试验界面

		L1	L2	L3	Σ	U1U2(°) 119,998
	U(V)	0.00000	0.00000	0.00000		U1U3(°) 240.000
	I(A)	0.00000	0.00000	0.00000		0200() 120.000
ŀ	$\Phi(^{\circ})$	0.0000	0.0000	0.0000		
	P(W)	0.00000	0.00000	0.00000	0.00000	
	Q(var)	0.00000	0.00000	0.00000	0.00000	
	S(VA)	0.00000	0.00000	0.00000	0.00000	
	PF	0.00000	0.00000	0.00000	0.00000	
	F(Hz)		50.000			
	U	o 80%	o 90%	100%	o 110%	o 120%
	PF	• 0.5L	• 0.8L	● 1.0	• 0.8C	○ 0.5C
	Ι¢	1% 0 5%	% <u>م</u> 10%	c 20% c	50% © 100	<mark>9% o 120% o 200%</mark>

图 4 试验界面

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

ZNX 智能星

该界面主要分为四个区域,上方的输出显示区和三相电压电流输出的矢 量图,下方是电压、电流、功率因数的试验点,最下面显示各相电压电流的 输出状态和界面名称。

1) 输出显示区

L1 L2 L3 :分别表示 A 、 B、 C 三相。

U(V): 各相电压输出有效值

I(A): 各相电流输出有效值

Φ(°): 某一相电流对电压相位值

P(W): 某一相有功功率值和三相总有功功率值

Q(var): 某一相无功功率值和三相总无功功率值

S(VA): 某一相视在功率值和三相总视在功率值

PF: 某一相功率因数值和三相总功率因数值

F(Hz): 频率值

在三相三线状态下无L2(B相)的数值,L1、L3栏下的U分别代表UAB、 UCB。

矢量图上方的数值为各相相电压间的相位值,三相三线状态下仅有 U1 U3 之间的相位值。三相四线状态下按下【确认】键,矢量图上方显示线电压的 有效值,如图 5,再次按下【确认】键,又回到显示相位的状态,以此循环。 三相三线状态下无此功能,只能显示相位。

	L1	L2	L3	Σ	
U(V)	0.00000	0.00000	0.00000		U12(V) = 0.000 U23(V) = 0.000
I(A)	0.00000	0.00000	0.00000		U31 (V) 0.000
$\Phi(^{\circ})$	0.0000	0.0000	0.0000		
P(W)	0.00000	0.00000	0.00000	0.00000	
Q(var)	0.00000	0.00000	0.00000	0.00000	
S(VA)	0.00000	0.00000	0.00000	0.00000	
PF	0.00000	0.00000	0.00000	0.00000	
F(Hz)		50.000			1108-201
U	o 80%	o 90%	• 100%	o 110%	o 120%
PF	○ 0.5L	• 0.8L	◎ 1.0	○ 0.8C	○ 0.5C
I o	1% 0 5%	6 c 10%	o 20% o	50% <mark>© 100</mark>	<mark>%</mark> o 200% o 400%

2) 输出设定区

○表示单选;□表示可多选; ◎表示单选选中;百分比是相对于【参数 设置】界面下用户设置的三相电压、电流的额定值而言的。

触摸显示屏上相应位置可选择不同电压试验点、电流试验点、相位试验点。

2. 参数设置

按【参数】按钮可以进入参数设置界面,如图6。

		L1	L2	L3		Σ		
	U(V)	0.00000	0.00000	0.000	00		U12(V) = 0.000 U23(V) = 0.000	
1	I(A)	0.00000	0.00000	0.000	00		U31 (V) 0.000	
	$\Phi(^{\circ})$	0.0000	0.0000	0.000	0			
	P(W)	0.00000	0.00000	0.000	00	0.00000		
	Q(var)	0.00000	0.00000	0.000	00	0.00000		}
	S(VA)	0.00000	0.00000	0.000	00	0.00000		/
2	PF	0.00000	0.00000	0.000	00	0.00000		
	F(Hz)		50.000					
	●四线	○ 三线	○单相		•	U1 220	V 🗹 🖊 5	A
	●有功	○ 无功				2 220	V V 2 5	Δ
	●正向	 反向 				02 220		11
	●正序	○逆序			~	U3 220	V 🛛 🛛 5	A

图6参数设置

屏幕上部显示内容同【试验】界面,显示三相输出的幅度。

ZNX 智能星

在屏幕的右下侧可以输入电源输出的额定档位。

U1、U2、U3右边的数字框;表示电源将要设定输出的三相额定电压值。
I1、I2、I3右边的数字框;表示电源将要设定输出的三相额定电流值。
通过触摸可以选中U1、U2、U3、I1、I2、I3左边的方框□,某一相
被选中,则这一相的左边方框变成
。如果三相电压或电流都被方框选中,
只需输入L1相的电压或电流,另外两相的输出于此相相同,如果三相电压
电流左边的方框没有被选中,则表示三相可以各自输入不同的数值,电源的
三相就可以输出各不相同的电压或电流。

电压电流额定档位额定值重新设定后,如果此时三相电压电流一直处于 输出状态,电源将按最新的设置自动改变输出幅度。

屏幕左下侧显示了电源的不同状态按钮,可以通过触摸这些汉字,即可 进行选择。

"四线":表示当前的电源状态是三相四线,液晶将显示三相电压、电流的各种输出量;"三线"按键表示电源状态变成三相三线,液晶只显示L1、L3 两相的输出状况;"单相"按键表示电源状态变成单相输出,电源将只输出和显示L1 的状态。

"有功"、"无功"是为了方便校验电度表设计,通过改变相位,校验 有功表和无功表,不校验电度表时一般默认有功状态。

◆ "正向"、"反向"也是为了方便校验电度表设计,电源通常默认正向,当选择反向时,每相电流相对于它的相电压与正向时相差 180°。

"正序"、"逆序"即表示三相四线情况下的相位关系即正相序和逆向

序,开机默认正序。

再次按下【参数】键,键入谐波及其他参数的设置界面,如图7。

L1	L2	L3		\sum		
0.00000	0.00000	0.000	00		U12(V) 0.000 U23(V) 0.000	
0.00000	0.00000	0.0000	00		U31(V) 0.000	
0.0000	0.0000	0.000	0		\frown	
0.00000	0.00000	0.000	00	0.00000		
0.00000	0.00000	0.000	00	0.00000		
0.00000	0.00000	0.0000	00	0.00000		
0.00000	0.00000	0.0000	00	0.00000		
	50.000					
UI	相位	含量	[⊡U1	⊡ 1	
				⊡U2	⊠ 2	
				⊡U3	<mark>⊠ 3</mark>	١.
			次数	如 含量(%	5) 相位 (°) [
				1	↓ 音关 清除	
	L1 0.0000 0.0000 0.0000 0.00000 0.00000 UI	L1 L2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 50.000 UI 相位	L1 L2 L3 0.00000 0.00000 0.0000 0.00000 0.0000 0.0000	L1 L2 L3 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	L1 L2 L3 Σ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.0	L1 L2 L3 Σ 0.00000 0.00000 0.00000 U12 (V) 0.000 0.00000 0.00000 0.00000 U31 (V) 0.000 0.00000 0.00000 0.00000 U31 (V) 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 I UI 相位 </td

图 7 谐波设置

"音关"表示将按键音关掉,点击之可以变成"音开",这是点击触摸 屏或者按键可以听到提示音。

"清除"表示清除所有谐波输出,电源将输出基波。

谐波设置的方法:

谐波可以多次设置,每一次可以设的不同,但每相电压电流的各次谐波 含量总和如下:

电压回路 2-8 次谐波含量最大为 40%, 9-15 次谐波含量最大为 30%, 16-31 次谐波含量最大为 20%, 32 次-50 次谐波含量最大为 8%。

电流回路 2-10 次谐波含量最大为 40%, 11-21 次谐波含量最大为 35%, 22-31 次谐波含量最大为 30%, 32 次-50 次谐波含量最大为 8%。

触摸[次数]、[含量]、[相位]右边的文字框,就可以对谐波输出进行设置。按面板上的数字键输入,【删除】键可以删除输入错误的数据。

ZNX 智能星

次数:表示电源输出的谐波次数,可输入 2-31 次。

含量:表示当前某次谐波对应基波的幅度,以百分比显示。

相位: 表示当前某次谐波对应基波的相位,单位是度。

对于由那些相的电压、电流参与到谐波输出中,由U1[~]U3、I1[~]I3 左侧 的方框□来决定,如果被选中,就表示将要参与到这一次的谐波设置。

所有谐波参数设置完后,而且光标停留在【次数】或【含量】或【相位】 右侧的方框内,最后按【确认】键进行谐波设置。此时在屏幕的左下侧表格 内会出现谐波设置的内容。其中【次数】栏内表示这一次设置的谐波次数, 【UI】栏内显示有哪些相的电压电流参与到本次谐波设置,【相位】栏内显 示本次设置的谐波相位,【含量】栏内显示本次设置的谐波含量,如果设置

3次谐波,谐波含量为10%,谐波相位为0°,如图8所示。

		L1	L2	2	L3			Σ		a (11)		
	U(V)	0.00000	0.0	0000	0.000	00			U1 U2	.2(V) 23(V)	0.00	00
	I(A)	0.00000	0.0	0000	0.000	00			U3	1 (V)	0.00	00
	$\Phi(^{\circ})$	0.0000	0.0	000	0.000	0					1	
	P(W)	0.00000	0.0	0000	0.000	00	0.0	0000				1
	Q(var)	0.00000	0.0	0000	0.000	00	0.0	0000	\vdash			\rightarrow
	S(VA)	0.00000	0.0	0000	0.000	00	0.0	0000				/
1	PF	0.00000	0.0	0000	0.000	00	0.0	0000	1		/	
	F(Hz)		50.	000								
	次数	UI		相位	含量	[⊡ ∐1		V 1		
	3	U1U2U3I1I	213	0	10			⊡U2				
								. ⊠U 3		⊠ 3	5	
						次對	数 3	含量(%	j) 10	相位	(°)	0
						1	†	¥		音	关	清除

图 8 谐波设置

删除谐波的方法:

A:删除所有谐波:

武汉智能星电气有限公司

Website: www.whznx.com

传真: 027-87678758

ZNX 智能星

触摸液晶屏幕选择左下侧表格任意一个谐波设置,使之变成蓝色,按【清除】键将清除掉所有谐波,仪器将只输出基波。

B:删除某一次或多个谐波:

触摸液晶屏幕选择左下侧表格中的某个要删除的谐波,或者使用【↑】 【↓】寻找到要删除的某次谐波设置,使之变成蓝色,按【删除】键就可 以删除掉这一次谐波,别的谐波仍然存在。如果还需要删除别的谐波,操 作步骤于此相同。如图9所示。

	L1	L	2	L3		Σ	
U(V)	0.00000	0.0	0000	0.000	00		U12(V) = 0.000 U23(V) = 0.000
I(A)	0.00000	0.0	0000	0.000	00		U31(V) 0.000
$\Phi(^{\circ})$	0.0000	0.0	000	0.000	0		
P(W)	0.00000	0.0	0000	0.000	00	0.00000	
Q(var)	0.00000	0.0	0000	0.000	00	0.00000	
S(VA)	0.00000	0.0	0000	0.000	00	0.00000	
PF	0.00000	0.0	0000	0.000	00	0.00000	
F(Hz)		50	.000				
次数	LIT		相位	会量	1	V 1	⊽ 11
2	U1U2U3T1T	213		10	1		⊠ 2
5		010	0	10		⊠U3	⊠ 13
Э	010203111	213	0	10	\ \ \ \ \ \		
7	U1U2U3I1I	213	0	10	(八多	23 宮重(
						1	 ↓ 音关 清除

图 9 谐波删除

3. 输出调节

按【调节】键,进入输出调节界面,主要是用来对各相输出进行细调, 如图 10。

	L1	L2	L3	Σ	
U(V)	0.00000	0.00000	0.00000		U12(V) 0.000 U23(V) 0.000
I(A)	0.00000	0.00000	0.00000		U31 (V) 0.000
$\Phi(^{\circ})$	0.0000	0.0000	0.0000		
P(W)	0.00000	0.00000	0.00000	0.00000	
Q(var)	0.00000	0.00000	0.00000	0.00000	
S(VA)	0.00000	0.00000	0.00000	0.00000	
PF	0.00000	0.00000	0.00000	0.00000	
F(Hz)		50.000			
	<mark>⊡ L1</mark>		<mark>⊽ L2</mark>		⊽ L3
• U	• I	° F	• PF	• Φ	◦ U1U3 ◦ U1U2
+0.01	% +0.1%	+1%	+10% -0.	01% -0.1%	% -1% -10%

1) 输出显示区(同【试验】界面)

2) 输出设定区

第一排选择 L1、L2、L3 表示该相是否参与调节,如果它们左侧左侧显示,表示此相参与调节,如果显示□,表示此相不参与调节,可以通过触 摸改变它们的状态;第二排选择 U、I、F、PF、Φ、U1U3、U1U2 表示要调节 的项目,分别表示调节电压幅度、电流幅度、功率因数、各相电流对应电压 的相位、U1U3 之间的相位,U1U2 之间的相位;第三排表示调节细度,根据 调节项的不同,选择不同的调节细度:

电压、电流的调节幅度均是相对于"参数设定"里输入的额定值的百分比,有±10%、±1%、±0.1%、±0.01%可以选择,但是请注意调节的最高限是 129%.

✓ 频率的调节是针对所有相的,调节细度有±5Hz、±1Hz、±0.1Hz、±
0.01Hz,注意调节范围是 45-65Hz。

功率因数的调节有超前或滞后 0.01、0.1 等。

相位的调节细度有±10°、±1°、±0.1°、0.01°,调节范围 0-359.99 。。

U1U3、U1U2的调节实际上调节的是U3、U2的相位,这是"L1"、"L2"、 "L3"是否被选中与此调节没有关系,在三相三线状态下U1U2的调节不起 作用,调节细度有±10°、±1°、±0.1°、0.01°,调节范围 0-359.99 。。

4. 谐波

	L1	L2	2	L3		Σ	U	1U2(°)	120	001
U(V)	230.005	229	.993	229.9	997	F(Hz)	1113(°)	240	001
I(A)	4.99952	5.00	0018	5.000	026	50.00	3	2113(%)	110	999
$\Phi(^{\circ})$	0.09065	0.00	0000	0.00	000		0.	200()	-	
P(W)	1149.90	114	9.99	1150	.03	3449.	93	1		
Q(var)	1.81567	0.0	5422	-0.21	154	1.654	41			
S(VA)	1149.91	115	0.00	1150	.04	3449.	97	113		2/12
PF	0.99998	0.99	9998	0.99	998	0.999	98	0-1		/02
100			U1	U2	- 1	U3-	11	12	-	13 -
10			_						-	
10			2-7	0.036	10.38	0.017	0.016	0.016	0.017	1
1			8-13	0.017	0.017	0.021	0.014	0.014	0.016	-
0.1			14-19	0.018	0.015	0.015	0.015	0.016	0.016	¥
Illum	alamannaanna		20-25	0.015	0.015	0.016	0.015	0.014	0.014	
U			-		0		- 14	Harn	nonics l	Display
						<u> </u>				

图 11 谐波显示

- 点【谐波】键,进入谐波显示界面,如图11。
- 1) 输出显示区(同主界面)
- 2) 选择不同相别 U1... I3, 确定显示哪一相谐波柱状图以及它的各次谐波含量。

5. 波形

点【波形】键,进入波形显示界面,如图12.

L1	L2	L3	Σ	U12(V)	381,089
U(V) 220.0	12 220.018	220.013	F(Hz)	$U_{23}(v)$	381 074
I(A) 9.9994	45 9.99981	9.99911	65.006	U31(V)	381.066
Φ(°) 0.000	00000.0	0.00000		001(0)	A
P(W) 2199.	98 2200.14	2199.95	6600.08		
Q(var) -0.05	15 0.00829	0.07318	0.02690		
S(VA) 2199.	98 2200.14	2199.96	6600.08	13	12
PF 0.999	99 0.99999	0.99999	0.99999	000	
L. Person		TU1 0.0	95 % [*	11 0.07	2 %
NA	XXX	FU2 0.1	25 %	12 0.07	1 %
101		FU3 0.10	08 % F	13 0.08	2 %
				Store	
U 🥚 🥥			•	波形	並不

图 12 波形显示

- 1) 输出显示区(同主界面)
- 2) 通过选择波形显示开关 U1... I3, 确定波形显示哪些相, 可以复选。
- 3) 波形失真度显示区:显示三相电压、电流的失真度。
- 6. 触摸屏校准

图 13 触摸屏校准

连续两次操作 [校准]按钮,可以进入触摸屏校准界面。

用触笔点十字图形的中心进行校准,若本次触摸产生的坐标值通过系统

认可,则自动出现下一个十字图形进行校准;否则不出现下一个十字图形, 需要重新点击直至本次触摸通过。当五个十字图形全部触摸通过后,显示屏 上会出现"校准成功",然后按复位键重新开机。

九、售后服务

本产品保修一年,实行"三包",终身维修,在保修期内凡属本公司设备质量问题,提供免费维修。由于用户操作不当或不慎造成损坏,提供优惠服务。

enc

NU