ZBT3915

智能蓄电池内阻测试仪

使用手册

武汉智能星电气有限公司

	目录	
<i>—</i> `,	概述	2
<u> </u>	操作指导	4
三,	仪器结构	15
四、	仪表存储说明	16
五、	常见问题解答	16
六、	日常维护	17
七、	智能蓄电池内阻测试仪数据管理	19
八、	注意事项	35
九、	运输、贮存	35
+、	售后服务	36

ΣS

ZBT3915 智能蓄电池内阻测试仪

一、概述

1. 用途

智能蓄电池内阻测试仪采用最先进的交流放电测试方法,能够精确测量 蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。 客户可以根据自身情况选择蓄电池的内阻测试,电压测试,容量估算。作为 新电池配组时内阻匹配的依据;在放电前后测试蓄电池内阻用于鉴别真实落 后电池;键操作和液晶触摸两种操作方式;它既可以对蓄电池进行成组测量, 也可以进行单节测量。

- 2. 特点
- 智能化、数字化,全中文操作菜单、准确测量、操作简单。
- 重量不超过0.5Kg,手持式与腰跨式双重设计,单人操作,全程自动 测量。
- 满足各种电池内阻检测标准,必须收录齐全的蓄电池内阻参数数据库,

ZNX 智能星

并能根据不同电池自己定义蓄电池标准内阻。

- 测试方法简单,不会影响蓄电池的工作状态,也不会产生安全隐患。
- 仪表本身可大量存储测试数据,并能在仪表上进行结论性查询和分析,也可将蓄电池测试数据用U盘导出到计算机软件中生成图表和曲线进行分析。
- 测试报表可以方便的导入 Excel 和 Word 文件,并以指定的格式打印 成报告,方便管理,以减少工作量。
- 四端多用途测试夹,集测试夹、探针等功能于一体,能够适应98%以
 上的电池连接安装方式和电池极柱形式。

TING

3. 功能

序号	项 目	描 述
1	电池测量	可进行单节电池、成组电池的内阻测量及性能评估。
2	示波器	示波器功能。
3	数据管理	测量数据结果的存储、回放、查阅、转存 U 盘等功能。
4	系统管理	包括计量校准、时间设置、语言选择、系统更新及软件版本信息等功能

4. 技术参数

	参数	项目
	内阻: 0.0mΩ100mΩ	测量范围
	电压: 0.000v16v	
	内阻: 0.01 mΩ	最小测量
	电压: 1mV	分辨率
	内阻: ±2.0%rdg±6dgt	测量精度
7	电压: ±0.2%rdg±6dgt	
.0	240×320 24bit 3.5寸 TFT LCD +触摸屏	显示屏
,	190mm×100mm×30mm	尺 寸
	0.5KG	重量
	16 M 字节 FLASH	内存容量
	可充电锂电池,充满可工作5~6小时	工作电源
	AC100~240V/DC8.4V-1A 电源适配器/充电器	外接电源
	USB 接口(可插接 U 盘)	通讯接口

二、操作指导

仪表开机/关机

N

仪表左侧有个⁽⁾电源开关,拨向上端即开机,拨向下端关机。开机主界面:

字母"U"表示仪表当前有正确插接 U 盘;

点击左上角的图标■,可将仪表当前屏幕保存到 U 盘。

1. 单节测量

点击单节测量,输入电压类型、电池类型、电池号参数后,单击触摸屏 "开始测量"按钮即可进行测量。

9	III 单节电池测	量 U+
	电压类型:	120
XJ.	电池类型:	0.8Ah 12V
	标准内阻:	120.00 m Ω
, XND.	电池号:	23
	返回参数	设置 开始测量

2. 成组测量

成组电池测量界面如下,其测量操作方法同单节电池测量。输入电压类型、电池类型、站号、组号、电池数参数后,单击触摸屏"开始测量"按钮即可进行测量。

〓 组,	成电池	测量	1	01	
电	压类型	1 :	20		
电	池类型	<u>l</u> :	100Ah	20	
标	准内阻	1:	1.00	mΩ	
站	É] :	0		
组	년	1 1 1	0		
电	池数	ż :	0		
返回	参	数设	2置	开始测	剛量

3. 示波器功能

双击主界面"示波器"菜单项进入示波器功能界面,如下图。示波器功能可进行简单的电压测量。

4. 数据管理功能

双击主界面"数据管理"菜单项进入数据管理功能界面,包括单节电池 测量数据和成组电池测量数据,可对数据记录进行打开回放、转存U盘、删 除等操作,同时还可以格式化数据记录。

۲	数	居类型	」単す	测量	U+
	文	:件	修	改时间	一大小
00	511	IG 000	3,08-0	4 10-0	4,7928
版	; ()	打开	左 疾	⊢≞№	格式化

5. 系统管理

系统管理界面如下,包括时间设置、参数校准、系统更新、语言选择、 版本信息等功能

(1) 时间设置

进入"系统管理"菜单→双击"时间设置"菜单,弹出"日期和时间" 对话窗,输入年、月、日、时、分、秒后,按"确定"即可。

(2) 参数校准

双击"系统管理"菜单→双击"参数校准"菜单,显示输入密码窗口(密码 888888888),输入密码正确后,自动进入"参数校准"功能菜单界面。

零点校准

双击"系统管理"菜单→双击"参数校准"菜单→双击"零点校准"菜单,进入零点校准功能,界面如下:

<mark>■</mark> 零点校准 U+ C	■ <mark>零点校准 U+</mark>	
AD0: 468 468 470 475 AD1: 492 492 492 492	AD0: 366 457 506 577 AD1: 250 250 250 250	
HUZ: 492 492 492 492	HU2: 850 852 852 853 校准完成!	
板個	拔回 枋准	0.V

点击"校准"按钮,界面显示"正在校准…"即进入零点校准环节,校 准完成后显示"校准完成!",如图 2-11 所示,此时已进行一次零点校准。 点击"校准"按钮将会进行新的一次校准过程。

电压校准

双击"系统管理"菜单→双击"参数校准"菜单→双击"电压校准"菜 单项进入电压校准功能,包括四个通道的电压校准,每个通道进行两个测量 点的校准,界面如下:

圓电压校正		U+
测量范围:	20	
测量值1:	13	mV
实际值1: 1		mV
测量值2:		mV
实际值 2:		mU
返回		校准

每个通道进行两个测量点的校准,如上图 2-13 所示。校正前有一个问

题必须清楚:每个电压档位都有一个最大的测量值,比如说 12V 档位的最大测量值是 1600mV,当校正此档位时就绝对不能超过这个值。校正方法:一般 先从大电压的档位校正,例如校正 12V 档位,选用 1450mV 和 980mV 这两 个点来校正;把 DC03 接到一个可调直流电源上,调节直流电源到 1450mV 左右,用万用表测出这个实际电压,然后输入到实际值 1 中,点击"校准" 按钮就完成第一个点校准,并自动跳到下一个点的校准框中,接着再调节直 流电源到 980mV 左右,用万用表测出此值,并输入到实际值 2 中,点击"校 准"按钮就完成了 12V 档位的电压校准,按同样的方法即可完成其他档位的 校准,完成后进入"保存参数"菜单中保存参数,电压校正完成。

内阻校准

内阻校准是根据标准电阻来校正仪表测量内阻的系数,双击"系统管理" 菜单→双击"参数校准"菜单→双击"内阻校准"菜单项进入内阻校准功能, 界面如下:

校准方法:内阻校准跟电压校准类似,每个档位校两个我公司提供的标

准电阻(也叫分流器)。正确连接好内阻校准线,如校准 0.5m Q档,选用 0.25m Q和 0.5m Q来校准,夹上 0.25m Q的标准电阻,点击"测量",测 量完后在实际值 1 中输入"250",然后点击校准完成第一个电阻的校准; 接着再测量 0.5m Q的电阻,完成后点击"校准"就可完成 0.5m Q档的校正。 按同样的方法即可完成其他档位的校准。校准 1.0m Q档,选用 0.5m Q和 1.0m Q来校准,校准 3.7m Q档,选用 1.0m Q和 3.75m Q来校准,校准 15m Q档,选用 3.75m Q和 15m Q来校准。校准完所有档位后,进入到"保存参 数"菜单中保存参数,内阻校正完成。

相位校准

双击"系统管理"菜单→双击"参数校准"菜单→双击"相位校准"菜单→双击"相位校准"菜单项进入相位校准功能,界面如下:

首先选择频率,点击"继续"按钮即进入相位校准界面。在各个档位夹 上相应的标准电阻进行测量,比如校准"0.5mΩ"档,夹上 0.5mΩ的标准 电阻点击"测量",然后点击"校准"按钮即完成 0.5mΩ档的相位校准,

并自动跳入下一档位,按同样的方法即可完成其它档位的校准。完成后进入 到"保存参数"菜单中保存参数,相位校正完成。

保存参数

双击系统管理菜单→双击"参数校准"菜单→双击"保存参数"菜单项进入保存参数功能,界面如下:

0

显示输入密码窗口(密码 12345678),输入密码正确后,自动保存参数。

触摸屏校准

双击系统管理菜单→双击"参数校准"菜单→双击"触摸屏校准"菜单 项即进入触摸屏校准的功能,如图:

点击触摸屏四周边缘区域,尽量得到触摸屏最接近边界的 AD 值(屏上会显示触摸点的 AD 值),单击"确定"按钮会保存校准结果。"默认"按钮则载入仪表默认的触摸屏校准系数,点击"取消"按钮取消本次校准。

(3) 系统更新

该仪表提供U盘更新系统软件的功能,先将升级的软件映像文件放入U 盘,接上仪表,进入"系统管理"菜单页面,双击"系统更新"菜单项,弹 出软件更新确认对话框,如图所示。

, ec'

点击"确认"按钮,即进入软件更新程序。此时仪表自动重启,并载入 U 盘的更新文件至仪表,软件更新完成后,仪表进入开机界面,可进行正常 的操作。

点击"取消"按钮取消更新程序。

(4) 语言选择

双击"系统管理"菜单→单双击"语言选择"菜单项,弹出仪表界面语 言设置选择对话框,如图。

该仪表提供中英文界面,选择所需的语言种类,点击对话框右上角"OK" 按钮,及进行语言设置。

(5) 版本信息

在系统管理菜单页面下双击"版本信息"菜单项,即可查看仪表系统软件版本,如图所示。

点击软件版本显示框任意区域,即可退出软件显示对话框。

三、仪器结构

1. 主机

主机用于在现场测试,进行操作、计算、显示 测试结果、存储等用途。(数量:1台)。

2. 充电器

充电器用于给主机供电和给电池充电用。一个。使用 ↔ 时,将充电器输入插头接于 220V 电源上,输出端接于主 机电源输入端即可。(数量:1个)。

3. 使用说明书

使用说明书详细介绍了使用功能和操作方法。用户在 用仪表测量前应仔细阅读。(数量:1册)。

4. 工具包

用来装主机及配件。(数量:1个)

连接测试探头与测试源时,注意安全,防止触电和短路的发生!

在进行连接时需特别注意电压测试线的颜色与主机插座的颜色必须一 致。同样,电压测试探头的颜色也应相互配合。

… 黑色测试线连接主机黑色插座和黑色电压测试探头,接测试源的N线!

图 23 仪表主机

四、仪表存储说明

- 1. 仪表用于存储数据的 FLASH 大小为 16M 字节(byte)。其中 15M 字节用 于存储检测数据。
- 2. 仪表数据有以下几种:

(1) 屏幕数据。以图片形式存储仪表当前的屏幕显示。文件名称 ddhhmmss.bmp。dd 为仪表当前日期(几日), hh 为当前小时, mm 为当前 分钟,ss为当前秒。此类文件以便都具有唯一的一个文件名称,文件大小一 致为 225Kbytes(字节)。 engting

(2) 检测结果数据。

单节电池测量数据

成组电池测量数据

3. 仪表数据的操作

在仪表主菜单的检测结果调阅功能下可以对数据文件进行打开回放、转 存U盘、删除等操作。数据文件转存到U盘为TXT文本文件格式。

五、常见问题解答

开机后无反应

可能是电池没电。给主机接上充电器,然后再开机。如果正常,则主机 电池需充电。您可选择接上充电器工作,或充满电后再使用。

武汉智能星电气有限公司	地址:武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 10	6
传真: 027-87678758	电话: 027-87678728 15872398130	
Website: www.whznx.com	E-mail: whznx188@163.com	

● 开机后蜂鸣器响

主机电池电力不够。需外接电源或充电后再工作。

● 主机菜单操作正常,外接信号无反应

主机电池电力不够或接触不良。如果打开主机背光后蜂鸣器响,则为电 池电力不足,需外接电源或充电后再工作。反之,则请检查接触是否可靠。

● 电池操作时间太短

电池有问题,需要重新激活。

● 测试过程中死机。

外接信号引入干扰太大。通常是地线探头不小心碰到火线上所致。关机后重起。

六、日常维护

1. 清洁维护

(1) 主机的清洁维护

使用柔软的湿布与温和型清洗剂清洗主机。请不要使用擦伤型、溶解型 清洗剂或酒精等,以免损坏主机上的文字。

(2) 电压测试线夹的清洁维护

使用柔软的湿布与温和型清洗剂清洗电压线夹。清洗完后用清水清洗一 遍,擦干。请不要擦伤探头的金属部分,以免造成接触不良,使测试结果出 现误差。 (3) 电流测试探头的清洁维护

使用柔软的湿布与温和型清洗剂定期擦洗电流探头。请不要使用擦伤型、溶解型清洗剂或酒精等。打开夹钳,用稍带一点油的布擦试磁芯头。不要让磁芯头生锈或腐蚀。

2. 存放

当使用完后,应将主机及时放入机箱内。所有探头和连线应整理后放入 机箱内相应位置。存放时,不需要将电池取出,即使是较长时间的存放也不 必要。然而,电池却会逐渐地放电。为了能保持电池的最佳状态,建议定期 给电池充电(每月一次)。

, 10

3. 电池维护

(1) 电池充电

交货时,电池可能没有充电,使用前应进行充电。充电器指示灯为红色 时表示正在充电,当其为绿色时表示电池已经冲满电。充满电后,电池一般 能供使用 5~6 个小时。

充电时,连接充电器和主机,无需开机即可充电。

如果长时间充电,譬如整个周末期间,也不会对仪器造成损坏。

*注意: 如有必要进行长时间充电时必须有人看护

(2) 延长电池操作时间

为了延长电池的操作时间,您可以采用以下方法重新激活电池。在电池 激活过程中,电池先彻底放电,然后再充满电。每年应该进行四次激活。

七、智能蓄电池内阻测试仪数据管理

一、软件的安装/卸载

1. 软件运行环境

操作系统:中文简体 windows98 版本以上

CPU:PIII 以上

内存:128MB 以上

硬盘:安装盘至少有 300M 的空间

显示器分辨率:1024×768 以上

2. 软件安装

(1) 在光盘上找到<智能电池内阻测试仪-数据分析管理软件 v3.02).exe>>, 双击运行。

(2) 出现如下界面:

👼 391系列软件 安装程序		×
	欢迎使 用 391系列软件 3.02 安裝程序。 强烈建议您在继续该安装之前,退出所有 Windows 程 序。 如果您有任何其他程序正在运行,请单击"取消",关 闭程序,然后再次运行该安装程序。 否则,请单击"下一步"继续。	1
		-

牙可切议 请仔细阅读以下许可协	议。			
在此插入您的许可协议	文本		<u> </u>	
				h / Z
			T	ZL .
 我同意该许可协议由 我不同意该许可协议 	9条款 义的条款			VGO
	<返回(B)	下一步(图) >	[取消(C)]	
		~ ~ ~	50	_
5 391系列软件 安装程	序	~ 7	~0	×
5391系列软件 安装程 田户信息	序	~'/		×
5331系列软件安装程 用户信息 储输入您的用户信息,并	序 并单击"下一步"继续。	~ 7		×
53391系列软件 安装程 用户信息 储输入您的用户信息,并	序 并单击 "下一步" 继续。			
▶ 391系列软件 安装程 用户信息 储输入您的用户信息, 并 名称:	序 ^{并单击} "下一步" 继续。	~ '/		
 391系列软件 安装程 用户信息 储输入您的用户信息, 并 名称: user 公司: 	序 并单击"下一步"继续。			
 391系列软件 安装程 細户信息 请输入您的用户信息, 并 名称: user 公司: 	序 并单击"下一步"继续。			
391系列软件 安装程 用户信息 储输入您的用户信息, 并 名称: user 公司: user	序 ^{并单击} "下一步" 继续。			
 391系列软件 安装程 用户信息 储输入您的用户信息, f 名称: user 公司: user 	序 ^{并单击} "下一步"继续。			
 391系列软件 安装程 用户信息 请输入您的用户信息,,,, 名称: user 公司: user 	序 ^并 单击"下一步"继续。			
391系列软件 安装程 用户信息 储输入您的用户信息, 并 名称: user 公司: user	序 ^{并单击} "下一步" 继续。			
 391系列软件 安装程 用户信息 備输入您的用户信息, 并 名称: user 公司: user 	序 ^并 单击"下一步"继续。			
 391系列软件 安装程 用户信息 请输入您的用户信息,,,, 名称: user 公司: user 	序 			

(3) 点击下一步(N) >按钮继续安装程序:

	391 系列软件 安装程序	
	安装文件夹 整想将 391系列软件 安装到何处?	
	软件将被安装到以下列出的文件夹中。要选择不同的位置,键入新的路径,或单击"更 改"浏览现有的文件夹。	
	将 391系列软件 安装到: C:\Program Files\391系列软件 更改 (H)	1
		<u>ZIL</u>
	所需至同: 15.1 mb 选定驱动器的可用空间: 40.63 GB	
	<返回(£) 下一步(£) > 取消(C)	
点击	下一步(N) > 按钮继续安装程序	
	391系列软件 安装程序	
	快捷方式文件夹	
	快捷方式图标将在下面指出的文件夹中创建。如果您不想使用默认文件夹,您可以键入 新的名称,或从列表中选择现有的文件夹。	
	快捷方式文件夹:	
	391系列软件	
1	 只对当前用户安装快捷方式 使快捷方式对所有用户都可用 	
	<返回(B)	

。 391系列软件 安装程序	×
確备安装 现在您正准备安装 391系列软件 3.02	
现在安装程序已有足够的信息将 391系列软件 安装到您的计算机中。	
将使用以下设置:	
安装文件夹: C:\Program Files\391系列软件	
快捷方式文件夹: 391系列软件	
请单击"下一步"继续安装。	
	$\otimes V \vee$
< 返回 (B) (下一步 (B) >	取消 (2)

17

(4) 安装完成后有如下界面:

	XA.	~~~
赐 391系列软件 安装程序		×
	安装成功 391系列软件 3.02 安装已完成。 感谢您选择 391系列软件 ? 请单击"完成"退出该安装程序。	
	く返回しの一気成での	取消 (<u>C</u>)

点击完成(F)结束安装

3. 软件卸载

执行:开始→程序→【智能电池内阻测试仪_数据分析管理软件】→【卸载 智能电池内阻测试仪_数据分析管理软件】,即可卸载.

如果安装路径下有未删除的文件,请手动删除.

4. 软件运行

(1)点击【开始】菜单,选"程序\智能电池内阻测试仪_数据分析管理软件"。

(2)点击"智能电池内阻测试仪_数据分析管理软件",程序开始运行。

5. 主界面

	\sim
	0
支电站1(站号:1) 中市 中市 東市站2(站号:2) 委电站3(站号:3)	
数据载入完成. 其计 3 个变电站, 1 个电池组, 1 条电池组测量记录.	

二、导入/修改数据

1. 导入测量数据

功能描述: **391** 的数据导入在 U 盘后,用户只要将 U 盘插入计算机,然后执行该功能即可将数据导入本系统中.

操作步骤:

执行【文件】菜单-【导入】命令,或者点击导入按钮 3 通,弹出【导入文

件】对话框

	■ 读数据文件 正在读数 选择文件	技据,请稍等 】 ^{单节电池所属变电站编号:}	× 变电站3▼		
 会入数据文件 査找范围(I): 我最近的文档 就面 我面 我的文档 我的 我的 我 	 → 391系列软件 → DataBase → EXCELPLATE → ICON → TestData → Uninstall 	2	← È 🛱 ⊞•	? 🗙	
	文件名 (20): 文件类型 (20):	 测量数据文件(.str;.sin;*.de □ 以只读方式打开 ®)	at)	打开 (<u>0</u>) 取消	

用户选择路径后,然后再选择文件,文件可以多选(建议用户一次全部选 择导入),按[Ctrl]键,可以选择不连续的文件,按[Shift]键可以选择连续的文件, 支持鼠标框选。如下图:

然后点击[打开(O)],导入完成后,系统下方任务栏将显示本次导入的提示 信息和总的统计信息:

3个数据文件导入完成. 共计 1 个变电站, 2 个电池组, 5 条测量记录.

如果该数据文件已经导入,系统将弹出以下对话框,禁止重复导入数据。

导入数据	8 🛛 🔀
1	文件stri0007.str已经导入,不能重复导入.
	铺定

2. 修改数据

功能描述:用户手动增加或修改变电站名称和电池组信息数据,程序根据电池组编号自动将数据导入到对应的电池组项目下。

在选中变电站或电池组项目时,单击工具栏编辑按钮 / ,即可进行相应的修改;

增加变电站,在变电站项目上单击右键并选择【添加站点】菜单,弹出 以下增加变电站点对话框:

記 增加变电站
变电站名称:
变电站编号:
增加(点) 取消(定)

增加电池组,在变电站项目上单击右键并选择【添加电池组】菜单,弹出以下增加变电站对话框:

^{增加电池组} 组电池信息输入单	X
·属变电站: 文电站3	-
1池组名称:	
池組编号: 干哪个电池组组号高动判断所导入的数据属	
产厂家:	
· ···································	
□压类型:	
11.11.11.11.11.11.11.11.11.11.11.11.11.	
	$ a! V \vee $
	K X Y G V
保存(<u>C</u>) 退出(<u>C</u>)	

修改变电站名称.在变电站项目上单击右键并选择【修改站点】菜单,弹 出以下变电站名称编辑对话框:

■ 名称编辑		
新变电站名称: 变电站1		
	保存 (5)	取消 (C)

删除站点.在变电站项目上单击右键并选择【删除站点】菜单,弹出以下

对话框:

重要提示	×
⚠	将删除当前变电站的所有测量数据,是否继续?
	<u>是(1)</u> 否(1)

增加或修改单节电池信息,在单节电池项目上单击右键并选择【添加、 修改】菜单,弹出以下对话框:

ZBT3915

		里节电池信息:	锕 人里			
所属变电站:	变电站3	▼ 电池名称 単	1节电池		册除(5)	
单节电池电编 ⁴	4	上产厂家:		_		
英华中尔坦合,		, нсжы.	V ### # 100		添加保存(<u>S</u>)	
#17电池空亏。	۱ <u> </u>		∨ фланенене ј	m 52	修改保存在	
额定容量:	AH	投运日期: 2011-06-27			IS EXTING (E)	
		,			退出的	
单节电池编	号单节电池	所属变电站	电压类型	容量	标准电阻	
12	单节电池12	变电站3			0	
13	単节电池13	受电站3			0	
14	単ヤ电池14	交电站3			U	
15	単节电池15	文电站3				
17	单位1010				0	
18	单节电电力 单节电池18	× 电和3 本由社3			0	
1	单节电池		4	2.8	100	
1	单节由油		2	150	100	
	单节电池		2	2.8	100	

Ling

三、查看/删除/导出数据

WUHR

1. 查看

选中电池组后点击按钮 , 或者双击电池组项目将弹出界面如下:

ZBT3915

-10 15:35:28 -10 15:35:28 中	20% 20% 30% 20% 10%		投运电池。赖尔	至日期:0 2型号:0 2数量:108节 空电压:2V 2参数:0V0mΩOA	H
由洲是	2011年1月10	由臣(四)	内阳(=-0)		连续电阻(***
	2011-3-10 15:35:29	2 250	1 300	0.000	
2	2011-3-10 15:36:35	2.200	1.000	0.000	0.000
	2011-3-10 15:30:33	2.204	1.301	0.000	0.000
	2011-3-10 15:37:42	2.230	1.303	0.000	0.000
	2011-3-10 15:38:16	2.230	1.043	0.000	0.000
6	2011-3-10 15:39:11	2.255	3 159	0.000	0.000
7	2011-3-10 15:39:48	2.238	19 979	0.000	0.000
	2011-3-10 15:40:11	2.243	9,019	0.000	0.000
	2011-3-10 15:41:01	2,260	1.744	0.000	0.000
10	2011-3-10 15:41:43	2,139	0, 884	0.000	0.000

双击左侧测量时间查看相应时间内的详细测量数据,上方饼图显示本次 测量的电池组状态的统计数据。

查看单体趋势图: 在测量数据窗口上单击 单体趋势(5) 按钮, 弹出直方图界 面如下:

▶	也组1-测量数据	计单体趋势				×
					- 变电站2电池组1	
☑ 第1节	☞ 第2节	□ 第3节	□ 第4节	4	投运日期:0	电池型号:0
□ 第5节	□ 第6节	□ 第7节	□ 第8节		额定电压:0	电池数量:108节
□ 第9节	□ 第10节	□ 第11节	□ 第12节	-	电池组参数: OVOmΩOAH	
▶ 容量	☑ 电	压 🔽	内阻 第1节	F	电压: 内阻: 容量:	
						110
						88
						66 55
						44 33
			 			22
			2011-3	3-10		0
趋势参数			····· 第2节	F	^{其压} : 内阳: 容量:	
	№ ₽		INT SIGNAT			

查看组直方图: 在测量数据窗口上单击 组直方图 (1) 按钮, 弹出直方图界面

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

地址:武汉市东湖新技术开发区光谷大道 303 号光谷芯中心文创楼 29 电话: 027-87678728 15872398130 E-mail: whznx188@163.com

武汉智能星电气有限公司 传真: 027-87678758 Website: www.whznx.com

	R 智麗电池内阻测试仪_数据分析官理软件	
	文件 (2) 编辑 (2) 帮助 (3)	
	日本 // × 身入数据 查看数据 修改 ×	
	────────────────────────────────────	
	■ 支电站2(站号:2)	
	电池组1(组号:1,0V,0.0AH 108节), 测量次数:1	
	□□□	
_	就绪 共计 3 个变电站, 1 个电池组, 1 条电池组测量记录.	1.

示:

将鼠标在柱状上移动时,窗口上将显示该节电池的详细信息。 查看单节电池测量数据,在主界面中双击"单节电池"项目,如下图所

■0\0-直方图						x	1
电池号:	10	测量时间:	2011-3-10 15:4	41:43		异常 优	
内阻(mΩ):	0.884	电压(\):	2.139	容量(%):	100		
电压变化直方图	<u>रू</u>						
内阻变化直方	হ						
	L						0.,
容量本化直方	م						
⊕ <u>E</u> ∑ ru <u>a</u> /JE							
						退出(E)	

如下:

系统将弹出以下单节电池测量数据界面:单击【导出报表】按钮可将单节测量数据导出到 Excel。

☆ 单节电池测量数据 🛛 🔀 🛛 💌							
电池号	测量时间	电压(V)	内阻(mΩ)	极化电阻	连线电阻	极柱温度	C2
12	2011-11-09 09:48:32	12.821	7.665	3.589	0.000	0	8.800
13	2011-11-09 09:48:48	1.998	0.801	0.244	0.000	0	192.7
14	2011-11-09 10:34:47	2.002	0.801	0.318	0.000	0	168.1
15	2011-11-09 10:36:08	12.960	7.684	4.176	0.000	0	8.280
16	2011-11-09 10:36:48	12.838	7.634	4.224	0.000	0	8.200
17	2011-11-09 11:07:25	12.814	7.747	4.625	0.000	0	8.330
18	2011-11-09 11:08:39	12.823	7.737	4.585	0.000	0	8.260
4							•

为单节电池测量数据添加备注

在相关数据条目上双击或单击右键选择【添加备注】菜单项,弹出备注 输入框,如下图: 当备注输入完成后按【回车】键(即 Enter 键)即可保存备 注,或在数据条目上再次单击也可保存。

ZBT3915

an 单节电池测量数据							
电池号	测量时间	电压(V)	内阻(mΩ)	容量(%)	状态	备注	
1	2010-08-04 10:08:34	2.074	1.00	100	优	双击添加备注	
10	2010-08-11 16:52:52	12.06	120.00	100	优	2号电池组	
16	2010-08-19 13:57:31	1.953	1.00	100	优		
1							
						导出报表 (E) 确 定 (D)	

2. 导出报表

NÚ

在测量数据界面点击【导出报表(E)】按钮,数据即可自动导出到 Excel 中。注: 电池组测量数据报表与单节电池测量数据报表略不相同。

导出时候已经按照 A4 纸标准 排好版式,可以直接打印,如下图所示:

	X+	始然再电视组	ם אנצייו פאי	Г
电池型号	1.2V 5AH	电池组名称	ζ	测试电池组
电池数量	12节	本次检测时	间	2010-7-21 14:26
电池组状さ	⊭藏计图 伏 (96.4%)		・発(S- 中口 一般(D- 一般(D-	■优 □良 0%) ■中 0%) ■益
 电池号	电压(V)	内阻(<u>≡</u> Ω)	容量(%)	没态
1	2.043	0.4	100	优
2	2.042	0.4	100	优
3	2.046	0.4	100	优
4	2.044	0.4	100	优
5	2.042	0.4	100	优
6	2.046	0.4	100	伉
				20e
7	2.052	0.4	100	170
7 8	2. 052	0.4	100	优优
7 8 9	2. 052 2. 044 2. 039	0.4	100 100 100	
7 8 9 10	2. 052 2. 044 2. 039 2. 045	0.4 0.4 0.4 0.4	100 100 100 100	/元 /伉 /伉 /伉
7 8 9 10 11	2. 052 2. 044 2. 039 2. 045 2. 038	0.4 0.4 0.4 0.4 0.4	100 100 100 100 100	
7 8 9 10 11 12	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04	0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100	けて 伏 伏 伏 伏 伏 伏 (花 (花 (花 (花 (花 (花 (花 (花 (花 (花
7 8 9 10 11 12 13	2.052 2.044 2.039 2.045 2.038 2.04 2.04 2.04	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100	
7 8 9 10 11 12 13 14	2.052 2.044 2.039 2.045 2.038 2.04 2.04 2.047 2.04	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100	
7 8 9 10 11 12 13 14 15	2.052 2.044 2.039 2.045 2.038 2.04 2.04 2.04 2.04 2.04 2.04	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100	
7 8 9 10 11 12 13 14 15 16	2.052 2.044 2.039 2.045 2.038 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100 100	
7 8 9 10 11 12 13 14 15 16 17 7	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04 2. 047 2. 04 2. 047 2. 04 2. 044 2. 044 2. 046 2. 053	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100 100 100	抗 抗
7 8 9 10 11 12 13 14 15 16 17 18 17	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04 2. 04 2. 047 2. 04 2. 047 2. 04 2. 044 2. 046 2. 053 1. 3	0. 4 0. 5 - 5	100 100 100 100 100 100 100 100 100 100	
7 8 9 10 11 12 13 14 15 16 17 18 19 9	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 045 2. 053 1. 3 1. 296	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100 100 100	抗 抗
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 053 1. 3 1. 296 1. 299	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100 100 100	抗 抗
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	2. 052 2. 044 2. 039 2. 045 2. 038 2. 04 2. 04 2. 04 2. 04 2. 04 2. 04 2. 044 2. 046 2. 053 1. 3 1. 296 1. 299 1. 298	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 100 100 100 100 100 100 100 100 100	抗 抗
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22	2.052 2.044 2.039 2.045 2.038 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04	0. 4 0. 5 0. 5 0	100 100 100 100 100 100 100 100 100 100	抗 抗

注意:如果您需要使用导出报表功能,请先装(Microsoft Excel2000)以上

版本。

3. 删除

(1) 删除变电站:

在主界面变电站项目上单击右键并选择【删除】菜单项,可以删除该变 电站,注意:系统必须保留至少一个变电站,当系统只剩下一个变电站时不 能进行删除,删除变电站会将该站内所有电池组数据删除。

(2) 删除电池组:

在主界面电池组项目上单击右键并选择【删除】菜单项,可以删除该电池组,注意:单节电池数据项目不能被删除,删除电池组会将该组内的所有测量数据删除。

(3) 删除电池组测量数据

在测量数据窗口的测量索引框内单击右键并选择【删除】菜单项,删除 该时间的测量数据。

选择测量时间,按[Ctrl]键,可以选择不连续的,按[Shift]键可以选择连续的,然后点击右键,选择【删除】即可删除多条数据。

(4) 删除单节电池测量数据

在单节电池测量数据窗口内单击右键并选择【删除】菜单项, 删除选中

的数据,也可同时选择多条数据进行删除。选择【删除所有】将单节电池测 量数据全部删除。

┏ 单节电池测量数据									
电池号	测量时间	电压(V)	内阻(mΩ)	容					
1	2010-08-04 10:08:34	2.074	1.00						
10	2010-08-11 16:52:52	12.06	120.00						
16	2010-08-19 13:57:31	1.953	100 添加备注 (C)						
			删除 (2) 删除所有 (2)						

4. 帮助

如果用户使用该软件发现缺陷,可联系我司相关人员,联系之前请用户 记录下版本号,便于技术人员尽快修正。(执行【帮助】菜单下的【关于】 命令查看版本号)

國 关于	智能电池内阻测试仪_数据分析管理软件	
R	智能电池内阻测试仪_数据分析管理软件 版本:V3.02 日期:2011/11/19	-
警告: 护, 未 全部, 的违反:	本计算机程序受版权法及国际公约的保 经授权擅自复制或散布本程序的部分或 将承受严厉的民事和刑事处罚,对已知 者将给予法律范围内的全面制裁。	

八、注意事项

- 1. 打开电源开关之前,应先将电流调节钮按逆时针调至"零位"。
- 2. 仪器应放置于干燥、通风,无腐蚀性气体的室内。
- 3. 请不要私自拆卸、分解或改造仪器,否则有触电的危险。
- 请不要私自维修仪器或自主改造、加工仪器,否则仪器不在质保之 列。
- 5. 为发挥本产品的优秀性能,在使用本公司产品前请仔细阅读使用说明 书。

九、运输、贮存

■运输

设备需要运输时,建议使用本公司仪器包装木箱和减震物品,以免在运 输途中造成不必要的损坏,给您造成不必要的损失。

设备在运输途中不使用木箱时,不允许堆码排放。使用本公司仪器包装 箱时允许最高堆码层数为二层。

运输设备途中,仪器面板应朝上。

■贮存

设备应放置在干燥无尘、通风无腐蚀性气体的室内。在没有木箱包装的 情况下,不允许堆码排放。

设备贮存时,面板应朝上。并在设备的底部垫防潮物品,防止设备受潮。

十、售后服务

本产品整机保修一年,实行"三包",终身维修,在保修期内凡属本 公司设备质量问题,提供免费维修。由于用户操作不当或不慎造成损坏,提 供优惠服务。

eng

Wut

ting Eleci